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METHODS AND APPARATUSES FOR TIME
ANNOTATED TRANSACTION LEVEL
MODELING

RELATED APPLICATIONS

This application claims the benefit of and priority to pro-
visional application No. 60/601,519 that was filed on Aug. 12,
2004 and is entitled, “VARIOUS METHODS AND APPA-
RATUSES FOR TIME ANNOTATED TRANSACTION
LEVEL MODELING.

FIELD OF THE INVENTION

Aspects of embodiments described generally describe time
annotated transaction level modeling.

BACKGROUND

In computer networks, internetworking, communications,
integrated circuits, etc., where there is a need to communicate
information, there are interconnections established to facili-
tate the transfer of the information. Interconnects may pro-
vide the physical communication network between two
agents such as agents of Intellectual Property (IP) blocks.
When designing systems that comprise such IP blocks and
interconnects, testing and simulation occurs prior to the fab-
rication of a System on a Chip (SoC) containing the IP blocks.

Before the SoC design can be manufactured, it should first
be designed, modeled, and verified. SystemC, a modeling
language and simulation environment, is an excellent choice
for building a software simulation model of the SoC. Just as
the physical hardware is designed by choosing IP blocks and
then connecting them together with interfaces, the software
simulation model is built from behavioral models of the IP
blocks that are then connected together by channel models.

A behavioral model may be an encoded formal abstract
definition of the hardware/IP block device being modeled.
The behavioral model describes the hardware/IP block
devices basic components, their properties, available opera-
tions, operation granularity, etc. The behavioral model allows
designers to analyze intrinsic operation of a single component
and/or the entire system while ignoring many implementation
issues.

Software simulation models are built to provide high level
models of a chip or system design. One form of higher level
modeling is transaction level modeling, where data and com-
mands may be sent from one module to another through
function calls. Software simulation models may use burst
transactions to increase the simulation speed. However, the
cycle timing accuracy of this type of models can be much
lower comparing to their corresponding physical hardware
system. A burst transaction is the sending of a whole group of
individual data words over an interconnect in response to a
single request. The burst transaction modeling scheme for
Open Core Protocol (OCP) communications modeling may
bereferred to as TL2 for “transaction level 2”. The slower, one
data word transmitted per request method of sending a request
across an OCP channel is called TL1 for “transaction level 1.
TL1 attempts to capture the cycle timing and ordering of the
hardware connection being modeled.

A previous OCP TL2 software simulation model sent
bursts through the channel without any explicit timing infor-
mation for each data word. When a module received a burst
transaction of, for example, 10 data words, the receiving
module had no timing information to determine when each of
the individual data words would have arrived. Thus, generally
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this previous OCP TL2 simulation model may not be used by
an architect who wants the fast simulation turnaround time of
such a high level simulation model of the system, but also
demands high cycle timing accuracy from the simulation
model (for instance, 75% or higher cycle timing accuracy
when compared to the corresponding physical hardware).

SUMMARY OF THE INVENTION

Methods and apparatuses are described for time annotated
transaction level modeling. An apparatus for explicit time
annotated transaction level modeling includes an initiator
module, a target module, and a communications channel with
each being modeled as an executable behavioral model. The
communications channel transports burst information
between the initiator module and the target module. The
communications channel has timing variable functions to
store timing variables and derive timing information associ-
ated with each individual transfer within a burst transaction
during a simulation.

A modeling tool for explicit time annotated transaction
level modeling includes IP modules and a channel commu-
nications module. The IP modules are the IP sub-components
of'an electronic design system modeled as executable behav-
ioral models. The channel communications module estimates
timing points for each request and response transfer between
sub-components in the electronic design system based on a
burst transaction having an accurate time annotation for the
start and arrival of each transfer in the burst transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 illustrates an embodiment of a block diagram of a
electronic design system;

FIG. 2A illustrates an embodiment of a block diagram of an
apparatus that provides time annotated transaction modeling;

FIG. 2B illustrates an embodiment of'a block diagram of an
issued request transaction having a timing field and a burst
information;

FIG. 2C illustrates an embodiment of'a block diagram of an
issued response transaction having a timing field and a burst
information;

FIG. 3 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) posted write burst transaction
with data handshake;

FIG. 4 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) posted write burst transaction
with no data handshake;

FIG. 5 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a single request
multiple data (SRMD) posted write burst transaction;

FIG. 6 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) read burst transaction;

FIG. 7 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a single request
multiple data (SRMD) read burst transaction;

FIG. 8 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) non-posted write burst trans-
action with data handshake;
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FIG. 9 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) non-posted write burst trans-
action with no data handshake; and

FIG. 10 illustrates an embodiment of a timing diagram for
a time annotated OCP TL2 channel model with a single
request multiple data (SRMD) non-posted write burst trans-
action.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth, such as examples of specific protocol commands,
named components, connections, types of burst capabilities,
etc., in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
these specific details. In other instances, well known compo-
nents or methods have not been described in detail but rather
in a block diagram in order to avoid unnecessarily obscuring
the present invention. Further specific numeric references
such as a first set of timing variables, may be made. However,
the specific numeric reference should not be interpreted as a
literal sequential order but rather interpreted that the first set
of timing variables is different than a second set of timing
variables. Thus, the specific details set forth are merely exem-
plary. The specific details may be varied from and still be
contemplated to be within the spirit and scope of the present
invention.

A System on a Chip (SoC) may include multiple Intellec-
tual Property (IP) blocks. An IP block may be a discrete
wholly integrated functional block of logic that performs a
particular function, such as a memory component, a wireless
transmitter component, a Central Processing Unit (CPU),
Digital Signal Processors, hardware accelerators such as
Moving Pictures Experts Group video compression compo-
nents, Direct Memory Access components, etc. for a SoC.
Each IP block is capable of performing its function. A SoC
may contain one or more interconnect cores that are respon-
sible for connecting and allowing the other IP blocks to com-
municate with one another.

Before the SoC design can be manufactured, it should first
be designed, modeled, and verified. Software simulation
models are built from behavioral models of the IP blocks that
are then connected together by communication channel mod-
els. Software simulation models, such as transaction models,
are built to provide high level models of a chip or system
design.

An example apparatus to provide transaction modeling
includes an initiator module, a target module, and a commu-
nications channel with each being modeled as an executable
behavioral model. The communications channel simulates
transporting transactions carrying burst information between
the initiator module and the target module. The communica-
tions channel has timing variable functions to store timing
variables and derive timing information associated with each
individual transfer within a burst transaction during a simu-
lation.

A timing variable function may be a self-contained soft-
ware routine that performs a task. Values may be passed to the
function, and values may be returned. Or, the function may
just perform the operation and not return a resulting value.
The concept of a function within a program is that, once
written, that function can be used over and over again without
the programmer having to duplicate the same lines of code in
the program each time that same processing is desired. Func-
tions may be activated by placing a “function call” statement
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in the program. The function call often includes values (pa-
rameters) that are passed to the function. When called, the
function performs the operation and returns control to the
instruction following the call.

In another embodiment, a modeling tool for explicit time
annotated transaction level modeling includes a first module
and a channel communications module. The first module
generates [P sub-components of an electronic design system
modeled as executable behavioral models. The channel com-
munications module estimates timing points for each request
and response transfer between sub-components in the elec-
tronic design system based on a burst transaction having an
accurate time annotation for transfers in the burst transaction.
A start time and an arrival time may be derived for each
transfer in the burst transaction based upon the time annota-
tion.

FIG. 1 illustrates an embodiment of a block diagram of an
electronic design implemented in physical hardware. Shared
communications bus 112 connects sub-systems 102, 104,
106, 108, and 110. Sub-systems are typically functional
blocks including an interface module for interfacing to a
shared bus. Sub-systems may themselves include one or more
functional blocks and may include an integrated or physically
separate interface module. In one embodiment, the sub-sys-
tems connected by communications bus 112 are separate
integrated circuit chips. In another embodiment, the sub-
systems connected by communications bus 112 are IP cores
on a SoC. The communications themselves may be commu-
nicated over a shared bus 112, communicated point to point,
or a combination of both.

This example electronic design system may be modeled.
This example electronic design system may have timing
information associated with transfers between the Sub-sys-
tems that are determined during simulation tests. The anno-
tated timing can be used in a chip model, which is made up of
sub models of various types. The timing annotated channel
model can be used to model the communications between one
Intellectual Property (IP) block model and another IP block
model, between one IP block model and a communications
model such as a bus or interconnect, and between on commu-
nications model and another communication model.

In an embodiment, Sub-system 104 may be an application
specific integrated circuit (ASIC), which is an integrated cir-
cuit designed to perform a particular function. Sub-system
106 is a dynamic random access memory (DRAM). Sub-
system 108 is an erasable, programmable, read only memory
(EPROM). Sub-system 110 can be a field programmable gate
array (FPGA). Sub-system 102 can be a fully custom inte-
grated circuit designed specifically to operate in system 100.
Other embodiments may contain additional sub-systems of
the same types as shown, or other types not shown. Other
embodiments may also include fewer sub-systems than the
sub-systems shown in system 100.

Integrated circuit 102 includes sub-systems 102A, 102B,
102C, 102D and 102E. ASIC 104 includes functional blocks
104 A, 104B and 104C. FPGA 110 includes functional blocks
110A and 110B. A functional block is a particular block of
logic that performs a particular function, such as memory
storage area, on an integrated circuit, etc.

System 100 is an example of a system that may consist of
one or more integrated circuits or functional IP cores on a
single chip.

Shared communications bus 112, such as a system on a
chip interconnect, provides a shared communications bus
between sub-systems of system 100. Shared communications
bus 114 provides a shared communications bus between sub-
systems or functional blocks on a single integrated circuit.
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Some of the functional blocks shown are connected to inter-
face modules through which they send and receive signals to
and from shared communications bus 112 or shared commu-
nications bus 114. Interconnect 115 is a local point-to-point
interconnect for connecting interface modules to functional
blocks.

Interface modules 120-127 are connected to various func-
tional blocks as shown. In this embodiment, interface mod-
ules 120, 122,123 and 124 are physically separated from their
connected functional block (A, B, C, E and F, respectively).
Interface modules 121, and 125-128 are essentially part of
their respective functional blocks or sub-systems. Some func-
tional blocks, such as 102D, do not require a dedicated inter-
face module. The arrangement of sub-systems, functional
blocks and interface modules is flexible and is determined by
the system designer.

In one embodiment, there are four fundamental types of
functional blocks. The four fundamental types are initiator,
target, bridge, and snooping blocks. A typical target is a
memory device. A typical initiator is a central processing unit
(CPU). However, any block may be a target or an initiator for
a given transaction. A typical bridge might be shared com-
munications buses 112 and 114. Functional blocks all com-
municate with one another via shared communications bus
112 or shared communications bus 114 and the protocol of
one embodiment. Initiator and target functional blocks may
communicate to a shared communications bus through inter-
face modules. An initiator functional block may communi-
cate with a shared communications bus through an initiator
interface module and a target functional block may commu-
nicate with a shared communications bus through a target
interface module.

An initiator interface module issues and receives read and
write requests to and from functional blocks other than the
one with which it is associated. In one embodiment, an ini-
tiator interface module is typically connected to a CPU, a
digital signal processing (DSP) core, or a direct memory
access (DMA) engine.

Note, the interconnect shown in FIG. 1 illustrates a bus
based interconnect. However, the interconnect may be imple-
mented in many ways such as switched or routed networks.

In one embodiment, a computing system with a processor
component executes instructions to simulate an initiator mod-
ule, such as sub-system 102A, that generates a first set of
timing variables. A target module, such as sub-system 102D,
generates a second set of timing variables. A channel module,
such as communications bus 114, transports transactions con-
taining burst information for a plurality of individual transfers
between the initiator module and the target module. The
channel module may be modeled as an executable behavioral
model and have a timing variable function to store timing
variables and derive timing information associated with each
individual transfer within a burst transaction during a simu-
lation.

In another embodiment, the initiator module can be mod-
eled to represent functional block 110A, the target module
can be modeled to represent functional block 104A, and the
channel module can be modeled to represent communications
bus 112.

The channel module may contain a processing module to
calculate when each transfer in the burst information started
on the channel and the latency for each transfer crossing the
channel based on the timing variables available from the
channel module. The channel module can be represented by
the communications bus 112 in addition to one or more func-
tional blocks for storing timing variables.
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The channel module may also be a point to point connec-
tion between an IP blocks such as connections 115 in FIG. 1.
In this embodiment, the annotated timing variables may be
used to closely estimate the timing of individual transfers
between models of IP blocks even if the transfers were sent
together in a burst at once. The annotated timing can be used
whether the models on each end are electronic components,
communications comments, or a mixture of the two.

FIG. 2A illustrates an embodiment of a block diagram of an
apparatus that provides time annotated transaction modeling.
The apparatus includes an initiator module model 202, a
target module model 220, and a communications channel
model 210. The initiator module model 202, target module
model 220, and communications channel model 210 are each
modeled as executable behavioral models. The executable
behavioral model can be a transaction level model written in
software language such as SystemC. Data and commands
may be sent between modules using function calls.

FIG. 2B illustrates an embodiment of a block diagram of a
request transaction, having a timing field and fields associated
with a burst transaction. The transaction 250 includes a com-
mand field 260, a data field 270, a burst length field 274, an
address field 280, and a timing field 290. The command field
260 may include the type of burst transaction, such as a write
orread burst transaction, a burst pattern such as incrementing,
streaming, etc, as well as the thread ID for the transaction. The
data field 270 may include one or more data words to be
written to the target module model 220 or read from the target
module model 220. The burst length field 274 may include the
length of the instruction 250. The address field 280 may
include the various addresses, such as the source and desti-
nation address of the data words to be written to the target
module model 220 or read from the target module model 220.
The timing field 290 may include timing variables and
derived timing information based on the timing variables. The
transaction 250 sent by the initiator module model 202 may
include timing variables generated by the initiator module
model 202.

FIG. 2C illustrates an embodiment of a block diagram of'a
response transaction, having a timing field and fields associ-
ated with a burst transaction. The response transaction 295
includes a status field 296, a data field 297, a burst length field
298, and a timing field 299. The status field 296 may include
the status of the response, such as whether an error occurred,
if the corresponding request was successful, etc., as well as a
thread ID for the response. The data field 297 may include one
or more data words read from the target module model 220.
The burst length field 298 may include the length of the
response 295. The timing field 299 may include timing vari-
ables and derived timing information based on the timing
variables. The transaction 295 sent by the target module
model 220 may include timing variables generated by the
target module model 220.

In one embodiment, the target module model 220 sends a
transaction 295 to the communications channel model 210.
The transaction 295 may include timing variables generated
by the target module model 220.

The communications channel model 210 may examine the
type of burst request generated by the initiator module model
202 and the modeled behavioral characteristics of the target
module model 220. The behavioral models may send instruc-
tions with data fields for the target address, the initiator
address, the type of burst transaction, the timing variables
associated with that behavioral model, etc.

The communications channel model 210 between the ini-
tiator module model 202 and target module model 220 has a
timing variable function 212 to store timing variables and
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derive timing information associated with each individual
transfer within a burst transaction during a simulation.

The timing variable function 212 of the communications
channel model 210 includes initiator module timing variables
214 and target module timing variables 216. The initiator
module model 202 sends a function call, such as a set initiator
module timing variables ( ) 204, to the communications chan-
nel model 210 which stores the initiator module timing vari-
ables: The target module model 220 sends a function call,
such as a set target module model timing variables ( ) 224, to
the communications channel model 210 which stores the
target module timing variables. The communications channel
model 210 can then derive timing information associated with
each individual transfer within the burst transaction during a
simulation based on timing variables received from the ini-
tiator module model 202 and the target module model 220.

In an embodiment, the target module model 220 may write
its timing variables to the timing field of the transaction 295.
Likewise, the initiator module model 202 may write its timing
variables to the timing field of the transaction 250. Thus, the
timing annotated TL2 channel model has timing information,
overhead timing fields (290 and 299), stored in each transac-
tion.

In another embodiment of the annotated timing, no timing
fields 290 or 299 exist as part of the transaction. In contrast,
the timing information is sent separately from the burst trans-
action. The timing information for the next (and each subse-
quent) transaction is set by direct function calls to the channel
model. This setting of timing information by direct function
calls may be easier to use in the case where the timing infor-
mation does not change with every new transaction. This
reduces the overhead involved, making the channel easier to
use and also increases simulation performance.

Either way, the target module model 220 can access timing
variables associated with the initiator module model 202 by
sending a function call, such as a get initiator module model
timing variables ( ) 222, to the communications channel
model 210. The initiator module model 202 can send a func-
tion call, such as a get target module model timing variables
() 206, to the communications channel model 210 to access
timing variables associated with the target module model
220.

The initiator module model 202 and target module model
220 can both access derived timing information associated
with each individual transfer within the burst transaction dur-
ing a simulation by sending a function call to the communi-
cations channel model 210. The initiator module model 202
and target module model 220 can each calculate timing points
for each transfer received within the burst transaction based
on timing variables stored and timing information derived in
the timing variable function of the communications channel
model 210.

In one embodiment, the initiator module model 202 calls a
function, such as a send request ( ) 208, in the communica-
tions channel model 210 through a port that is connected to
the communications channel model 210. The communica-
tions channel model 210 takes the request and triggers an
event, request start event 230. The request start event 230
starts a process in the target module model 220 which then
sends the function call, get request () 226, to the communi-
cations channel model 210. At a possibly later time, the target
module model 220 may send the function call, accept request
() 228 to the communications channel model 210. The com-
munications channel model 210 then triggers an event,
request end event 240, that the initiator module model 202
recognizes as signaling the end of the request. The request
sent from initiator module model 202 to communications
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channel model 210 can be accessed by the target module
model 220 via aregister 218 or other storage device within the
communications channel model 210. The channel model may
also contain state variables stored in a hardware storage
device such as a register 218, or a memory.

The apparatus 200 illustrates a time annotated transaction
model that sends both burst and timing information to the
communications channel model 210. In a transaction model,
communication between modules is modeled using function
calls. A transaction model is functionally accurate and may be
cycle timing accurate or approximate. The communications
channel model 210 can be a time annotated OCP TL2 chan-
nel. An OCP burst transaction includes the transporting of
burst information across the OCP TL2 channel. Burst infor-
mation includes request, data, and response transfers. A time
annotated OCP TL2 burst transaction includes the transport-
ing of burst and the setting of the timing information associ-
ated with each individual transfer within a burst transaction.
As discussed, the OCP burst transaction may not contain a
timing information field 290 or timing information field 299.
Instead, the initiator module model 202 and the target module
model 220 using separate function calls to the channel model
set the timing information.

In one embodiment, the initiator module model 202 can be
a master module model and the target module model 220 can
be a slave module model. The initiator module model 202 can
set the initiator timing variables for the burst transaction by
calling a function in the channel model. The timing variables
can be used to derive timing points for each individual trans-
fer of the burst. The target module model 220 can set its
timing variable fields in the channel model after it receives the
burst transaction. These timing variables can be used to derive
timing points for each individual transfer of the burst.

In one embodiment, the initiator module model 202 sup-
plies timing variables in one function call associated with a
number of requests and responses. The same timing variables
may then be used repeatedly for all following burst requests.
The target module model 220 also supplies timing variables
in one function call associated with a number of requests and
responses. The function calls between the initiator module
model 202 and the target module model 220 simulate a com-
munications protocol of the communications channel.

The initiator module model 202 and target module model
220 can each calculate timing points for each transfer
received within a burst transaction based on timing variables
stored and timing information derived in the timing variable
function 212 of the communications channel model 210. This
can lead to high cycle timing accuracy that had merely been
achievable with the much slower TL1 channel while still
keeping the large performance gain from sending whole
bursts at once.

Accordingly, the time annotated transaction model may
generate fast simulation times for burst transaction simula-
tions with highly accurate timing information for each trans-
fer in the burst transaction. In one embodiment, the target
module model 220 sends two or more responses in a single
function call. In another embodiment, the initiator module
model 202 sends two or more requests in a single function
call.

Burst transactions send a plurality of transfers as a group
instead of one transfer at a time. Timing variables and derived
timing information associated with all transfers in a burst
transaction may be stored. The derived timing information,
such as time annotations that each transfer in the time anno-
tated burst transaction is, for example, 10 nanoseconds apart,
and may be stored in the communications channel model 210.
Overall, accurate timing information is generated for each
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transfer that makes up the high speed time annotated burst
transaction. The time annotated transaction model may also
incorporate this timing point technique into other transaction
level models as well.

Each burst transaction may have a thread ID associated
with it such as in the command field (260) or the status field
(296) of the transaction. Each burst transaction may have
timing variables, which are set to match the transaction and
the thread ID associated with the transaction. Timing variable
values may be difterent for each different transaction. Timing
variables may be different for transactions with different
thread IDs.

In one embodiment, the software used to facilitate the
protocol and algorithms associated with the time annotated
transaction modeling can be embodied onto a machine-read-
able medium. A machine-readable medium includes any
mechanism that provides (e.g., stores and/or transports) infor-
mation in a form readable by a machine (e.g., a computer).
For example, a machine-readable medium includes read only
memory (ROM); random access memory (RAM); magnetic
disk storage media; optical storage media; flash memory
devices; DVD’s, EPROMs, EEPROMs, FLLASH, magnetic or
optical cards, or any type of media suitable for storing elec-
tronic instructions. The information representing the appara-
tuses and/or methods stored on the machine-readable
medium may be used in the process of creating the appara-
tuses and/or methods described herein. For example, the
information representing the apparatuses and/or methods
may be contained in an Instance, soft instructions in an IP
generator, or similar machine-readable medium storing this
information.

Accordingly, a machine-readable storage medium having
instructions stored thereon, which when executed by a
machine, can cause the machine to generate an apparatus. The
apparatus may at least include an initiator module, a target
module a communications channel. The initiator module can
be modeled as an executable behavioral model. The target
module can be modeled as an executable behavioral model.
The communications channel is configured to transport burst
information between the initiator module and the target mod-
ule. The communications channel can be modeled as an
executable behavioral model and has timing variable func-
tions to store timing variables and derive timing information
associated with each individual transfer within a burst trans-
action during a simulation.

The machine readable storage medium storing these
instructions may perform the time annotated transaction level
modeling of the apparatus containing the initiator module, the
target module, and the communications channel.

Also, a computing system, may at least include a processor
component, a machine readable storage medium, an initiator
module, a target module and a channel module. The processor
component cooperates with the machine readable storage
medium. The processor component executes instructions to
simulate: the initiator module that generates a first set of
timing variables; the target module that generates a second set
of timing variables; and the channel module for transporting
transactions that include burst information for a plurality of
transfers between the initiator module and the target module.
The channel module is configured to store the first and second
set of timing variables. A processing module calculates when
each transfer in the burst information started on the channel
and a latency for each transfer crossing the channel module
based on the first and second set of timing variables.

In one embodiment, a method to provide time annotated
transaction level modeling includes simulating the transport-
ing of burst information including a plurality of transfers
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between the initiator module model 202 and the target module
model 220 via a channel. The method further includes main-
taining a first set of timing variables associated with the
initiator module model 202 and maintaining a second set of
timing variables associated with the target module model
220.

The method may further include simulating the communi-
cations channel module model 210 for transporting burst
information across the channel, and storing the first and sec-
ond set of timing variables; and calculating when each trans-
fer in the burst information started on the channel and the
latency for each transfer crossing the channel based on the
first and second set of timing variables.

The method may further include simulating a channel call
sent from the initiator module model 202 to the communica-
tions channel module model 210 for transporting the first set
oftiming variables across the channel; and simulating a chan-
nel call sent from the target module model 220 to the com-
munications channel module model 210 for transporting the
second set of timing variables across the channel.

The following timing diagrams illustrate various imple-
mentations of time annotated transaction modeling.

FIG. 3 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) posted write burst transaction
with data handshake. The time annotated OCP TL2 channel
model 300 (channel 300) transports a burst transaction
between a master module model 340 (master 340) and a slave
module model 350 (slave 350). Each model is an executable
behavioral model. The executable behavioral model can be a
transaction level model written in the SystemC language.

The channel 300 achieves a fast channel speed due to using
the entire OCP burst transaction as the granularity of the
model. The channel 300 stores timing variables and derives
timing information that can be used to accurately estimate the
timing of the individual OCP transfers that underlie each OCP
burst transaction while maintaining the efficiency of sending
an entire burst as a single command. The stored timing vari-
ables can include a first and second set of timing variables
corresponding to the master 340 and slave 350, respectively.
When a core model, such as master 340 or slave 350, receives
an OCP burst transaction, that core model can use the timing
variables and derived timing information to calculate the
starting and ending times of each OCP transfer that makes up
the burst. The master 340 can set the following timing vari-
ables: request data latency (RqDL), response accept latency
(RpAL), request send interval (RqSndl) and data send inter-
val (DSndl). The slave 350 can set the following timing
variables: request accept latency (RqAL), write data accept
latency (DAL), and response send interval (RpSndl).

The channel 300 derives timing information based on the
timing variables set by the master 340 and slave 350. The
derived timing information includes an estimated average
write data interval (avgWDI), an estimated average read
request interval (avgRRql), an estimated average read data
interval (avgRDI) and an estimated average write response
interval (avgWRpl). Additional derived timing information
includes the start time of each individual request, the start
time of each individual data handshake transfer, and the total
duration of the burst.

In order to optimize speed and efficiency, the channel 300
can be un-clocked with the timing determined by the master
340 and the slave 350, which send function calls to the chan-
nel 300. The channel 300 is active when the master 340 or
slave 350 has called one of its functions.

In FIG. 3, activities for a request phase 310, a data hand-
shake phase (DHS) 320, and a response phase 330 within a
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burst transaction are represented horizontally with simulation
time increasing from left to right. The channel 300 transports
burst information such as requests on the request phase 310,
data on the DHS 320, and responses on the response phase
330 between the master 340 and slave 350. Each dashed
vertical line indicates a timing point, actual or estimated, that
occurs within a burst transaction. A timing point usually
represents either the beginning or end of an OCP phase activ-
ity inside a burst transaction. The master 340 and the slave
350 use the timing points to improve timing accuracy. The
alphanumeric order among letters shown inside dashed boxes
attached to the same timing point line indicates which box
occurs first. The number inside a dashed box, if any, indicates
the transfer count. Latency between two interesting timing
points is shown by a horizontal, double arrow line segment
tagged with a fixed latency or a latency estimation function.

Dashed box A represents the last transfer timing point
where a slave can provide backpressure information to the
channel 300 to prevent a request. Dashed box B is the starting
point of a write or read request. Dashed boxes B1, B2, and B3
are the starting points of write data blocks in FIG. 3. Dashed
boxes C1, C2, and C3 are the ending points of write data
blocks in FIG. 3.

Each triangle in FIG. 3 represents a function call that may
need to be issued by the master 340 or slave 350 to the channel
300. Triangle 1 is the last time that the slave 350 can set the
slave timing variables on the channel 300 for the next burst
transaction. The slave 350 can modify the slave’s timing
variables at triangle 1' if mid burst backpressure is allowed. In
this case, DAL was changed to DAL'. Triangle 2 is the start
time of the TL2 burst request on the channel 300. Triangle 3
is the end of the burst transaction.

Note that the times when these function calls are made to
the channel 300 are associated with actual simulation times
given by the operation of the simulation. The other timing
points are then estimated using both the actual timing points
from the function calls and the timing variables passed to the
channel 300.

In FIG. 3, time B is the last time for the master 340 to set the
master’s timing variables on the channel for the upcoming
burst transaction. At time B, the master 340 calls a function to
send the write burst over the channel 300. The master 340
sends all of the information for the write burst at this time,
including the command field, a data array field, a burst length
field, an address field, and other write burst transaction infor-
mation. The burst transaction ends at timing point C3 with
write data 326 being received by the slave 350. This timing
point C3 is calculated from timing variables set by the master
340 and the slave 350 as well as by the burst length of the write
transaction function call from the master 340 at triangle 2.
The slave 350 accepts the burst request at triangle 3 but does
not send an acknowledgement response to the master 340 in
this burst transaction, which is a posted write burst.

The start time of the first data block, write data 322, can be
determined from the start of burst transaction, time B, and
from the request data latency (RqDL) timing variable of the
master 340. RqDL is the interval in clock cycles between the
time when the master 340 places the request on the channel
300 and the time that the master 340 places the corresponding
data block on the channel 300. When the slave 350 receives
the write burst request with the timing variable RqDL, the
slave 350 knows the start time of the first write request 312 of
the burst transaction and can compute the start time of the first
data block as:

B1=B+RqDL.
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The average time between data block and “i+1” of a
burst, the average write data interval (avgWDI), can be deter-
mined by two factors: how fast the master 340 can send data
down the channel 300 (DSndR) and how long the slave 350
waits to accept the data (DAL). Since the master 340 can not
send a new data block until the slave 350 accepts the previous
data block, both the master 340 and slave 350 determine the
avgWDI.

73233
1

avgWDI=max(DSndl,DAL)

DSndR is defined to be the data arrival rate at which the
master 340 sends data down the channel 300 if the slave were
to instantly accept all data. The data send interval (DSndl) is
1/DSndR. DSndI is the interval between data blocks if the
master 340 were connected to a fast slave 350. If the master
340 can send data over the channel 300 every single clock
cycle, then the DSndl would be 1. If the master 340 can
merely send data every other clock cycle, then the DSndl
would be 2. The DAL, data accept latency, is the number of
clock cycles the slave 350 will take to accept each data block,
such as write data 322. The maximum interval of either DSndI
or DAL is the limiting factor that determines the avgWDI.
DAL' corresponding to write data 326 is a larger interval
(more clock cycles) compared to DAL which corresponds to
write data 322 and write data 324.

If the slave 350 runs at a constant rate, then the DAL and
other slave timing variables can be left unchanged during the
duration of the burst transaction. Optionally, the slave 350 can
be configured to update the timing information to the channel
300. For example, during the burst, slave timing information
can be provided at timing point A' by the slave 350. Mid burst
timing information is treated as auxiliary information that is
optional.

The end time of the OCP write burst occurs at timing point
C3 when the slave 350 has accepted the burst transaction.
After the slave 350 determines this timing point C3, the
channel 300 is then free to start a new burst. The slave 350
should accept the OCP TL.2 burst transaction even if the slave
command accept or slave data accept signal is not part of the
OCP channel.

FIG. 4 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) posted write burst transaction
with no data handshake. The time annotated OCP TL2 chan-
nel model 400 (channel 400) transports burst information of
the burst transaction between a master module model 440
(master 440) and a slave module model 450 (slave 450).

The timing diagram of FIG. 4 is similar to FIG. 3, except in
FIG. 4, the DHS 420 is turned off. In an OCP channel without
data handshake, each write request and write data block are
sent together. Timing points B and B1 merge as RqDL equals
zero for a channel with no data handshake. Write/req data 412
in FIG. 4 represents the same information as the combination
of write req 312 and write data 322 in FIG. 3.

In FIG. 4, the burst transaction request starts at triangle 2
with the master 440 setting the master timing variables for the
upcoming transaction. If the timing variables are the same as
for the previous transaction, this step is optional. The master
440 may then call a function at triangle 2 to start the write
burst request on the channel. The burst write transaction
request may include a command field, a data array field, a
burst length field, an address field, and other OCP transaction
information. The burst write transaction ends at timing point
C3 when the slave 450 accepts the burst transaction. The slave
450 does not send a response to the master 440 in this burst
transaction.
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The channel 400 stores timing variables set by the master
440 and the slave 450. The channel 400 provides timing
helper functions that may be used to calculate derived timing
information commonly needed by the master 440 and the
slave 450. Approximate timing points for each OCP transfer
(e.g., request, data, and response transfers) can be calculated
based on the timing variables stored in the channel 400 and
the derived timing information provided by the timing helper
functions.

FIG. 5 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a single request
multiple data (SRMD) posted write burst transaction. The
time annotated OCP TL2 channel model 500 (channel 500)
transports burst information of the burst transaction between
a master module model 540 (master 540) and a slave module
model 550 (slave 550).

The timing diagram of FIG. 5 is similar to FIG. 3, except in
FIG. 5, a single write request, write req 512, is sent from the
master 540 to the channel 500. In FIG. 3, multiple write
requests are sent each corresponding to one write data block.
InFIG. 5, a single write request corresponds to all of the write
data blocks of the burst.

In FIG. 5, the master 540 sets the master timing variables
for the burst before sending the burst at triangle 2. The burst
transaction starts at triangle 2 with the master 540 sending the
write burst transaction to the channel 500. The write burst
request may include a command field, a data array field, a
burst length field, an address field, and other OCP fields. The
channel 500 derives the timing information from the master
and slave timing variables and from the length of the burst.
The burst transaction ends at timing point C3, triangle 3,
when the slave 550 accepts the burst write request. Because
this is a posted write, the slave 550 does not send an acknowl-
edgement response to the master 540 in this burst transaction.

The channel 500 stores timing variables set by the master
540 and the slave 550. The channel 500 provides timing
helper functions that calculate derived timing information
commonly needed by the master 540 and the slave 550.
Approximate timing points for each OCP transfer (e.g.,
request, data, and response transfers) can be calculated based
on the timing variables stored in the channel 500 and the
derived timing information provided by the timing helper
functions even though the entire burst transaction was sent
with a single function call. Large arrays of data can be quickly
written within a single burst transaction while maintaining
accurate timing points.

FIG. 6 illustrates an embodiment of a timing diagram for a
timing annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) read burst transaction. The
time annotated OCP TL2 channel model 600 (channel 600)
transports burst information of the burst transaction between
a master module model 640 (master 640) and a slave module
model 650 (slave 650).

A read burst is modeled using a read burst, request-side
transaction and a read burst, response-side transaction in par-
allel. Thus, a read burst’s response-side transaction can be
overlapped with another read burst’s request-side transaction,
in terms of simulation timing.

A read burst has similar timing points as previously
described for a write burst with a few exceptions. A read burst
has no request-side data block delivery. A read request burst
from the master 640 will cause a corresponding read response
burst with response data from the slave 650. A read burst has
new timing points including triangles 4 and 5 as well as
dashed boxes D, E, and F.

The master 640 may call a function in the channel 600 to set
the master timing variables for the read transaction. The mas-
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ter timing variables are related to how quickly the master 640
can send the read request burst and how quickly the master
640 can process and accept aresponse burst from the slave. At
triangle 2, the master 640 calls a function to put the read burst
request on the channel 600. At triangle 3, the slave 650
accepts the read burst request.

At triangle 4 the slave 650 may call a function to set the
slave timing variables on the channel. This could be necessary
if the timing variables for the response had changed since the
slave 650 sent the last response burst. At triangle 4 the slave
650 calls a function in the channel 600 to start the response
burst 630 on the channel. The response burst may contain
fields for the status of the response, an array of the response
data, the length of the response burst, and other OCP fields. At
triangle 5 the master 640 accepts the response burst 630.

Dashed boxes B1, B2, and B3 represent the timing points
for the start of each of the read requests which make up the
read burst 610. Dashed boxes C1, C2, and C3 are the timing
points of the end of each of the read requests which make up
read burst 610. Dashed boxes E1, E2, and E3 represent the
timing points of the start of each of the read response data
words which make up the response burst 630. Dashed boxes
F1,F2, and F3 are the timing points marking the ending points
of an OCP response data words which make up the read
response burst 630.

A read burst also has new timing variables and derived
timing information including request send rate (RqSndR),
request accept latency (RqAL), and average read request
interval (avgRRql). The average time between read request
“1” and “i+1” of a read burst, the average read request interval
(avgRRqI), can be determined by two factors: how fast the
master 640 can send requests down the channel 600 (RSndR)
and how long the slave 650 waits to accept the request
(RgAL).

avgRRqlI=max(RqSndl,RqAL)

The request send interval (RqSndl) is 1/RqSndR. RqSndI
is the interval between data requests if the master 640 were
connected to a fast slave 650 which could instantly accept all
requests. If the master 640 can send requests over the channel
600 every single clock cycle, then the RqSndl would be 1. If
the master 640 can merely send requests merely every other
clock cycle, then the RqSndl would be 2. The RqAL, data
accept interval, is the number of clock cycles the slave 650
will take to accept each request. The maximum interval of
either RqSndI or RqAL is the limiting factor that determines
the avgRRql.

Ifthe slave 650 does not need to use backpressure to delay
acceptance of data blocks, the RqAL is set to 1. The same
mechanism used by the write burst is used on the request-side
of a read burst in order to provide the backpressure timing
information with RqAL replacing DAL.

Read requests and read data responses are processed inde-
pendently on different paths as illustrated in FIG. 6. Thus, the
master 640 can send a size 3 read burst requesting three data
words and the slave 650 could respond with two chopped
responses of size 2 and size 1.

The timing point E1 is the time of the first response data,
read resp/data 632, sent over the OCP connection. There can
be many read bursts for returning response data.

The average time between read response data “i” and “i+1”
of'aread burst, the average read data interval (avgRDI), can be
determined by two factors: how fast the slave 650 can send
response data blocks down the channel (RpSndl) and how
long the master 640 waits to accept the response data block
(RpAL).

avgRDI=max(RpSndl,RpAL)
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RpSndl is the number of clock cycles between response
data blocks if the master 640 were to instantly accept all
responses. [fthe slave 650 can send a new response data block
over the channel every single clock cycle, then the RpSndl
would be 1. If the slave 650 can merely send a new response
data block every other clock cycle, then the RpSndl would be
2. The RpAL, response accept latency, is the number of clock
cycles the master 640 will take to accept a response. The
maximum interval of either RpSndl or RpAL is the limiting
factor that determines the avgRDI. RpSndI' corresponding to
read resp/data 636 is a shorter interval (less clock cycles)
compared to RpSndl which corresponds to read resp/data
632.

Ifthe master 640 does not need to use backpressure to delay
acceptance of response data blocks, the RpAL is setto 1. The
master 640 can be configured to update timing information to
the slave 650. The master 640 can set its response timing
variables before the response is started at time D1. Optionally,
the master may change its timing values mid burst. In FIG. 6
such a mid burst timing variable change might be done at time
D3. It may also optionally be set at other times during the
burst.

In FIG. 6, the burst transaction starts at timing point Bl
with the master 640 sending read req burst to the channel 600.
The read req burst may include a command field, a burst
length field, an address field, and other OCP fields. The slave
650 sends the read resp/data burst to the channel 600 at timing
point E1 in response to the read req burst sent at timing point
B1. The Read resp/data burst may include a response status
field, a data array field, a burst length field, and other OCP
response fields. The response burst transaction ends at timing
point F3 with read resp/data burst being accepted by the
master 640. The master 640 can send a burst read request to
the slave 650 via the channel 600 in a single function call, for
example, triangle 2. The slave 650 can send a burst read
response data block to the master 640 via the channel 600 in
a single function call, for example, triangle 4 in this burst
transaction.

The channel 600 stores timing variables set by the master
640 and slave 650. The channel 600 provides timing helper
functions that calculate derived timing information com-
monly needed by the master 640 and slave 650. Approximate
timing points for each OCP transfer (e.g., request, data, and
response transfers) can be calculated based on the timing
variables stored in the channel 600 and the derived timing
information provided by the timing helper functions.

FIG. 7 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a single request
multiple data (SRMD) read burst transaction. The time anno-
tated OCP TL2 channel model 700 (channel 700) transports
burst information of the burst transaction between a master
module model 740 (master 740) and a slave module model
750 (slave 750).

The timing diagram of FIG. 7 is similar to FIG. 6, except in
FIG. 7, the read burst transaction is a single read request, read
req 712, sent from the master 740 to the channel 700. In FIG.
6, multiple read response data blocks are sent in response to
the read request. In FIG. 7, the single read request triggers the
response of multiple read response data blocks.

In FIG. 7, the master 740 may set the master timing vari-
ables in the channel 700 for the read burst transaction at or
before triangle 2. The read burst transaction starts at timing
point B1 with the master 740 sending the read request burst
transaction to the channel 700. The read request burst may
include a command field, a burst length field, an address field,
and additional OCP fields. The read request burst ends when
the slave 750 accepts the read request burst. In FIG. 7 for
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example this occurs at triangle 3. The slave 750 can set the
slave timing variables in the channel 700 for the response
before it sends the burst response. In FI1G. 7, this would be any
time before or at triangle 4. The slave 750 sends the response
burst transaction to the master 740 via the channel 700 in a
single function call, for example, at triangle 4. The read burst
response may include a response status field, a data array
field, a burst length field, and other OCP fields. The response
burst transaction ends at timing point F3 when the master 740
accepts the response burst with a function call to the channel
700 at triangle 5.

The channel 700 stores timing variables set by the master
740 and slave 750. The channel 700 provides timing helper
functions that calculate derived timing information com-
monly needed by the master 740 and slave 750. Approximate
timing points for each OCP transfer (e.g., request, data, and
response transfers such as read req 712, read resp/data 732
and read resp/data 734) can be calculated based on the timing
variables stored in the channel 700 and the derived timing
information provided by the timing helper functions even
though the read request and read response were sent as single
burst transactions. Large arrays of data can be quickly
accessed and read within a single burst transaction while
maintaining accurate timing information.

FIG. 8 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) non-posted write burst with
data handshake on for a single write burst transaction. The
time annotated OCP TL2 channel model 800 (channel 800)
transports burst information of the write burst transaction
between a master module model 840 (master 840) and a slave
module model 850 (slave 850).

The timing diagram of FIG. 8 is similar to FIG. 3, except in
FIG. 8 with a non-posted write burst, the slave 850 sends an
acknowledgement response to the master 840 via the channel
800. In FIG. 3, the slave 350 does not send an acknowledge-
ment response to the master 340 via the channel 300.

On the request side of the burst transaction, timing points
and variables described in FIG. 3 with the posted write burst
apply to FIG. 8. On the response side, FIG. 8 is similar to the
timing points and variables in FIG. 6, except no data blocks
are delivered and the avgRDI used for the read burst in FIG.
6 is replaced by the average write response interval (avg-
WRpl) in FIG. 8.

The average time between write response “i” and “i+1” of
awrite burst, the average write response interval, (avgWRpl),
can be determined by two factors: how fast the slave 850 can
return a write response (RpSndl) and how long the master 840
waits to accept the write response (RpAL).

avgWRpI=max(RpSndl, RpAL)

RpSndl is the number of clock cycles between write
responses if the master 840 were to instantly accept all
responses. [fthe slave 850 can send a new write response over
the channel 800 every single clock cycle, then the RpSndl
would be 1. If the slave 850 can merely send a new write
response every other clock cycle, then the RpSndl would be 2.
The RpAL, response accept latency, is the number of clock
cycles the master 840 will take to accept a response. The
maximum interval of either RpSndl or RpAL is the limiting
factor that determines the avgWRpl. RpSndl' corresponding
to write resp 836 is a shorter interval (less clock cycles)
compared to RpSndl which corresponds to write resp 832.

InFIG. 8, the burst transaction starts at timing point B with
the master 840 sending a write burst request transaction to the
channel 800. The write burst transaction may include a com-
mand field, a data field, a burst length field, an address field,
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and other OCP fields. The master 840 may set or change the
master timing variables on the channel 800 by calling a func-
tion in the channel 800. The write burst request transaction
ends at timing point C3 when the slave 850 accepts the write
burst request transaction by calling at function in the channel
800 at triangle 3. In FIG. 8, the slave 850 sends an acknowl-
edgement burst response to the master 840 through the chan-
nel 800 by calling at function in the channel 800 at triangle 4.
This sets timing point E1, the start of the first acknowledge-
ment response, write resp 832. The slave 850 may also set or
change the slave timing variables at or before sending the
response burst transaction at triangle 4. The response burst
transaction ends at timing point F3. This time when the mas-
ter 840 accepts the response burst transaction with a function
call to the channel 800 at timing triangle 5. The timing point
F3 is the time of the end of the last response acknowledge-
ment transfer, write resp 836 in FIG. 8. The master 840 can
send multiple write requests and write data blocks to the slave
850 via the channel 800 in a single function call, for example,
triangle 2. The slave 850 can send multiple write responses to
the master 840 via the channel 800 in a single function call,
for example, triangle 4.

The channel 800 stores timing variables set by the master
840 and slave 850. The channel 800 provides timing helper
functions that calculate derived timing information com-
monly needed by the master 840 and slave 850. Approximate
timing points for each OCP transfer (e.g., request, data, and
response transfers) can be calculated based on the timing
variables stored in the channel 800 and the derived timing
information provided by the timing helper functions.

FIG. 9 illustrates an embodiment of a timing diagram for a
time annotated OCP TL2 channel model with a multiple
request multiple data (MRMD) non-posted write burst trans-
action with no data handshake. The time annotated OCP TL2
channel model 900 (channel 900) transports burst informa-
tion of the burst transaction between a master module model
940 (master 940) and a slave module model 950 (slave 950).

The timing diagram of FIG. 9 is similar to FIG. 8, except in
FIG. 9, the data handshake, DHS 920, is turned off. Each
write request and write data block are sent together by the
master 940 as illustrated in FIG. 9. Timing points B and B1
merge because RqDL equals zero. Write/req data 912 in FIG.
9 represents the same information as write req 812 and write
data 822 in FIG. 8.

In FIG. 9, the write request burst transaction starts at timing
point B1 with the master 940 sending a write request burst
transaction to the channel 900 by calling a function at triangle
2. The write request burst transaction may include a command
field, a data field, a burst length field, an address field, and
other OCP fields. The timing point B1 marks the beginning of
the first write request in the burst, write req/data 912. The
master 940 may also call a function in the channel 900 to set
the master timing variables in the channel 900. The write
request burst transaction ends at timing point C3 when the
slave 950 accepts the write burst request with a function call
to the channel 900 at triangle 3. The timing point C3 marks the
end ofthe last write request in the burst, write req/dat 916. The
slave 950 sends a burst response to the write request by calling
a function in the channel 900 at triangle 4. The response burst
transaction may include a response status field, a burst length
field, and other OCP fields. The start of the response burst
transaction is timing point E1, which is the start of the first
response transfer, write resp 932. The slave 950 may also set
slave timing variables with a call to the channel 900. The
master 940 accepts the response burst transaction with a call
to the channel at triangle 5. This is timing point F3 in FIG. 9,
which is the end of the last write response transfer, write resp
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936, being received by the master 940 from the slave 950. The
master 940 can send multiple write request and data blocks to
the slave 950 via the channel 900 in a single function call, for
example, triangle 2. The slave 950 can send multiple write
responses to the master 950 via the channel 900 in a single
function call, for example, triangle 4.

The channel 900 stores timing variables set by the master
940 and slave 950. The channel 900 provides timing helper
functions that calculate derived timing information com-
monly needed by the master 940 and slave 950. Approximate
timing points for each OCP transfer (e.g., request, data, and
response transfers) can be calculated based on the timing
variables stored in the channel 900 and the derived timing
information provided by the timing helper functions.

FIG. 10 illustrates an embodiment of a timing diagram for
a time annotated OCP TL2 channel model with a single
request multiple data (MRMD) non-posted write burst trans-
action with data handshake. The time annotated OCP TL2
channel model 1000 (channel 1000) transports burst informa-
tion of the burst transaction between a master module model
1040 (master 1040) and a slave module model 1050 (slave
1050).

The timing diagram of FIG. 10 is similar to FIG. 8, except
in FIG. 10, the master 1040 sends a single write request
transfer to the slave 1050 and the master 1040 receives a
single write response transfer from the slave 1050. In F1G. 8,
the master 840 sends multiple write requests to the slave 850
and the master 840 receives multiple write responses from the
slave 850.

In FIG. 10, the burst transaction starts at timing point B
with the master 1040 sending a write request burst transaction
to the slave 1050 via the channel 1000 with a single function
call at triangle 2. The write request burst transaction may
include a command field, a data field, a burst length field, an
address field, and other OCP fields. The master 1040 may also
set or change the master timing variables in the channel 1000
by calling a function in the channel 1000. The timing point B
is the start of the write request transfer, write req 1012 The
start of the first write data transfer, write data 1022, is calcu-
lated from timing point B and the timing variable RqDL. The
master 1040 can send a single request and multiple write data
blocks to the slave 1050 via the channel 1000 in a single
function call, for example, triangle 2. The write request burst
transaction ends when the slave 1050 accepts the write
request burst by calling a function in the channel 1000 at
triangle 3. The slave 1050 may set of change the slave timing
variables by calling a function in the channel 1000. The slave
1050 sends a write response burst transaction via the channel
1000 with a single function call at triangle 4. This is timing
point E in FIG. 10. Timing point E is the time of the start of the
write response transfer, write resp 1032. The write response
burst transaction may include a response status field, a burst
length field, and other OCP fields. The write response burst
transaction ends when the master 1040 accepts the write
response burst transaction via the channel 1000 with a single
function call at triangle 5. The burst transaction ends at timing
point F3 with the single write response, write resp 1032, being
received by the master 1040 from the slave 1050 via the
channel 1000.

The channel 1000 stores timing variables set by the master
1040 and slave 1050. The channel 1000 provides timing
helper functions that calculate derived timing information
commonly needed by the master 1040 and slave 1050.
Approximate timing points for each OCP transfer (e.g.,
request, data, and response transfers) can be calculated based
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on the timing variables stored in the channel 1000 and the
derived timing information provided by the timing helper
functions.

This invention has been described with reference to spe-
cific embodiments. It will, however, be evident to persons
skilled in the art having the benefit of this disclosure that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. The specification and drawings are
accordingly to be regarded in an illustrative rather than
restrictive sense.

What is claimed is:

1. A non-transitory machine-readable storage medium
having instructions stored thereon, which when executed by a
machine, are configured to cause the machine to generate an
apparatus, comprising:

an initiator module modeled as a first executable behav-

ioral model,;

atarget module modeled as a second executable behavioral

model, where information regarding a burst transaction
is communicated between the initiator module and the
target module of a System on a Chip through a commu-
nications channel, where the burst transaction consists
of two or more individual transfers and the communica-
tions channel is separate and distinct from both the ini-
tiator module and the target module; and

one or more timing function routines configured to obtain

timing variables for the burst transaction that uses a
communications protocol that includes distinct fields of
a command field and a timing field for the burst trans-
action communicated between the initiator module and
the target module, where the timing field includes 1)
timing variables, or 2) derived timing information based
onthe timing variables, where either the initiator module
or the target module use the one or more timing function
routines to determine the timing information associated
with each of the two or more individual transfers within
the burst transaction during a simulation, by either 1)
making a direct function call to the communications
channel that the burst transaction passes through to
retrieve information about the burst transaction includ-
ing its timing information or 2) basing the timing infor-
mation on the timing variables or the derived timing
information contained in the timing field for the burst
transaction, and then using the one or more timing func-
tion routines to derive timing information associated
with each individual transfer within the burst transaction
during the simulation, where the derived timing infor-
mation associated with each individual transfer within
the burst transaction is correlatable to give an accurate
correlation to a clock cycle operation of the System on a
Chip during the simulation.

2. The non-transitory machine-readable storage medium of
claim 1, where the first executable behavioral model of the
initiator module is also configured to make a second function
call to retrieve information about the burst transaction includ-
ing its timing information and use the one or more timing
function routines to derive timing information associated
with each individual transfer within the burst transaction dur-
ing the simulation, and where data and commands are sent
from one module to another module through function calls.

3. The non-transitory machine-readable storage medium of
claim 2, where the first executable behavioral model of the
initiator module uses a first timing function routine of the one
ormore timing function routines that is configured to use time
annotated modeling to make the derived timing information
associated with each individual transfer within a burst trans-
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action cycle accurate to the clock cycle operation of the
System on a Chip used during the simulation.

4. The non-transitory machine-readable storage medium of
claim 1, wherein the timing information associated with a first
individual transfer is derived separately from the timing infor-
mation associated with a second individual transfer and
where both the derived timing information associated with
the first individual transfer within the burst transaction and
the derived timing information associated with the second
individual transfer within the burst transaction are correlat-
able to give the accurate correlation to the clock cycle opera-
tion of the System on the Chip during the simulation.

5. The non-transitory machine-readable storage medium of
claim 4, where the burst transaction also has the command
field and a data field to store the derived timing information
associated with the burst transaction.

6. The non-transitory machine-readable storage medium of
claim 1, where a model of the communications channel is
configured to transport the burst transaction and estimate
timing points for each request and response transfer associ-
ated with the burst transaction between the initiator module
and the target module in the System on a Chip based on the
burst transaction having one or more fields containing an
accurate time annotation for the two or more individual trans-
fers in the burst transaction.

7. The non-transitory machine-readable storage medium of
claim 1, further comprising:

the communications channel is modeled as a third execut-

able behavioral model that has one or more storage
locations to store the timing variables associated with
the burst transaction being communicated between the
initiator module and the target module, where the target
module as the second executable behavioral model is
configured to make the direct function call to the com-
munications channel to obtain the timing variables asso-
ciated with the burst transaction.

8. The non-transitory machine-readable storage medium of
claim 1, wherein the first executable behavioral model of the
initiator module uses a routine to calculate timing points for a
first transfer within the burst transaction based on the timing
variables stored and timing information derived in a first
timing variable function routine of the model of the commu-
nications channel.

9. The non-transitory machine-readable storage medium of
claim 1, wherein the target module as the second executable
behavioral model calculates timing points for a first transfer
received within the burst transaction based on the timing
variables stored and the timing information derived in the one
or more timing variable functions of a communications chan-
nel model.

10. The non-transitory machine-readable storage medium
of claim 1, wherein the first executable behavioral model of
the initiator module is a transaction level model written in a
SystemC language.

11. The non-transitory machine-readable storage medium
of claim 6, wherein the model ofthe communications channel
is configured as a time annotated Open Core Protocol (OCP)
Transaction Level 2 (TL2) channel.

12. A method for modeling operation of a System on a Chip
to provide time annotated transaction level modeling, com-
prising:

simulating transporting of burst transaction information

including a plurality of transfers from a first model of an
initiator module through a communications channel to a
second model of a target module in the System on the
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Chip, wherein the communications channel is separate
and distinct from both the initiator module and the target
module;

maintaining a first set of timing variables associated with

the initiator module;
using a communications protocol that includes distinct
fields of'a command field and a timing field for the burst
transaction information communicated between the ini-
tiator module and the target module, where the timing
field includes 1) timing variables, or 2) derived timing
information based on the timing variables;
maintaining a second set of timing variables associated
with the target module using one or more timing func-
tion routines to 1) obtain the first set and the second set
of timing variables for the burst transaction information
communicated between the initiator module and the tar-
get module, 2) derive timing information associated
with a first individual transfer within the burst transac-
tion during the simulation, and 3) derive timing infor-
mation associated with a second individual transfer
within the burst transaction during the simulation; and

where the second model of the target module is configured
to make a function call to retrieve information about the
burst transaction including its timing information and is
configured to use the one or more timing function rou-
tines to derive the timing information associated with the
first individual transfer and the second individual trans-
fer within the burst transaction during the simulation,
where the derived timing information associated with
each individual transfer within the burst transaction is
correlatable to give an accurate correlation to a clock
cycle operation of the System on the Chip during the
simulation.

13. The method for modeling operation of the System on
the Chip of claim 12, where the first model of the initiator
module is configured to make the function call to retrieve
information about the burst transaction including its timing
information and use the one or more timing function routines
to derive the timing information associated with each indi-
vidual transfer within the burst transaction during the simu-
lation, and where data and commands are sent from one
module to another module through function calls.

14. The method for modeling operation of the System on
the Chip of claim 13, where the first model of the initiator
module uses a first timing function routine of the one or more
timing function routines that is configured to use the time
annotated transaction level modeling to make the timing
information associated with each individual transfer within a
burst transaction cycle accurate to the clock cycle operation
of the System on the Chip used during the simulation,
wherein the timing information associated with the first indi-
vidual transfer is derived separately from the timing informa-
tion associated with the second individual transfer.

15. The method for modeling operation of the System on
the Chip of claim 12, where the burst transaction has a timing
field and a burst information field to store timing information
associated with the burst transaction.

16. The method for modeling operation of the System on
the Chip of claim 12, where the burst transaction also has a
command field and a data field to store timing information
associated with the burst transaction.

17. The method for modeling operation of the System on
the Chip of claim 12, where a model of the communications
channel is configured to transport the burst transaction and
estimate timing points for each request and response transfer
associated with the burst transaction between the initiator
module and the target module in the System on the Chip based
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on the burst transaction having one or more fields containing
an accurate time annotation for transfers in the burst transac-
tion.

18. The method for modeling operation of the System on

the Chip of claim 12, further comprising:

simulating the communications channel modeled as an
executable behavioral model that has one or more stor-
age locations to store the first set and the second set of
timing variables associated with the burst transaction
being communicated between the initiator module and
the target module, where the second model of the target
module is configured to make the function call to the
communications channel to obtain the second set of the
timing variables associated with the burst transaction.

19. A computing system, comprising:

a processor component cooperating with a non-transitory
machine readable storage medium, where the processor
component is configured to execute instructions in a
simulation to simulate

an initiator module modeled as a first behavioral model that
generates a first set of timing variables for a burst trans-
action;

a target module modeled as a second behavioral model that
generates a second set of timing variables for each trans-
fer in the burst transaction, where the initiator module
and target module are part of a System on a Chip, where
the System on the Chip is configured to use a commu-
nications protocol that includes distinct fields of'a com-
mand field and a timing field for communication of the
burst transaction information from the initiator module
through a communications channel to the target module,
where the burst transaction includes three or more trans-
fers within the burst transaction and the communications
channel is separate and distinct from both the initiator
module and the target module; and

one or more timing function routines to derive burst infor-
mation for the three or more transfers in the burst trans-
action so that timing information for each transfer is
cycle accurate to a clock cycle operation of the System
on the Chip during the simulation, where the one or more
timing function routines are configured to obtain timing
variables from either the first or second set of timing
variables for the burst transaction that use the commu-
nications protocol including its distinct fields of the
command field and the timing field for the burst trans-
action, where the timing field includes 1) the timing
variables from either the first or second set of timing
variables for the burst transaction, or 2) derived timing
information based on the timing variables, where the
timing function routines obtain the timing variables
from either the first or second set of timing variables for
the burst transaction depending upon whether the target
module or the initiator module generated the burst trans-
action, where either the initiator module or the target
module use the one or more timing function routines to
determine the timing information associated with each
of the two or more individual transfers within the burst
transaction during a simulation, by either 1) making a
direct function call to the communications channel that
the burst transaction passes through to retrieve informa-
tion about the burst transaction including its timing
information or 2) basing the timing information on the
timing variables from either the first or second set of
timing variables for the burst transaction or the derived
timing information contained in the timing field for the
burst transaction, and then using the one or more timing
function routines to derive timing information associ-
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ated with each individual transfer within the burst trans-
action during the simulation.

20. The computing system of claim 19, further comprising:

a channel module to store the first and second set of timing
variables; and 5

a processing module configured to calculate when each
transfer in the burst transaction started on the channel
module and a latency for each transfer crossing the chan-
nel module based on the first and second set of timing
variables. 10
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